Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine
نویسندگان
چکیده
Inward rectifier K+ channels mediate the K+ conductance at resting potential in many types of cell. Since these K+ channels do not pass outward currents (inward rectification) when the cell membrane is depolarized beyond a trigger threshold, they play an important role in controlling excitability. Both a highly voltage-dependent block by intracellular Mg2+ and an endogenous gating process are presently assumed to underly inward rectification. It is shown that strong voltage dependence of rectification found under physiological conditions is predominantly due to the effect of intracellular spermine. Physiological concentrations of free spermine mediate strong rectification of IRK1 inward rectifier K+ channels even in the absence of free Mg2+ and in IRK1 mutant channels that have no endogenous rectification.
منابع مشابه
Electrostatics in the Cytoplasmic Pore Produce Intrinsic Inward Rectification in Kir2.1 Channels
Inward rectifier K+ channels are important in regulating membrane excitability in many cell types. The physiological functions of these channels are related to their unique inward rectification, which has been attributed to voltage-dependent block. Here, we show that inward rectification can also be induced by neutral and positively charged residues at site 224 in the internal vestibule of tetr...
متن کاملTime-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines rem...
متن کاملTime-dependent Outward Currents through the Inward Rectifier Potassium Channel IRK1 The Role of Weak Blocking Molecules
Outward currents through the inward rectifier K 1 channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg 2 1 (0.44–1.1 mM) or putrescine ( z 0.4 mM) to the intracellular milieu where endogenous polyamines remained, a...
متن کاملInteractions of polyamines with ion channels.
Endogenous polyamines, in particular spermine, have been found to cause block and modulation of a number of types of ion channel. Intracellular spermine is responsible for intrinsic gating and rectification of strong inward rectifier K+ channels by directly plugging the ion channel pore. These K+ channels control the resting membrane potential in both excitable and non-excitable cells, and cont...
متن کاملInteraction Mechanisms between Polyamines and IRK1 Inward Rectifier K+ Channels
Rectification of macroscopic current through inward-rectifier K+ (Kir) channels reflects strong voltage dependence of channel block by intracellular cations such as polyamines. The voltage dependence results primarily from the movement of K+ ions across the transmembrane electric field, which accompanies the binding-unbinding of a blocker. Residues D172, E224, and E299 in IRK1 are critical for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 80 شماره
صفحات -
تاریخ انتشار 1995